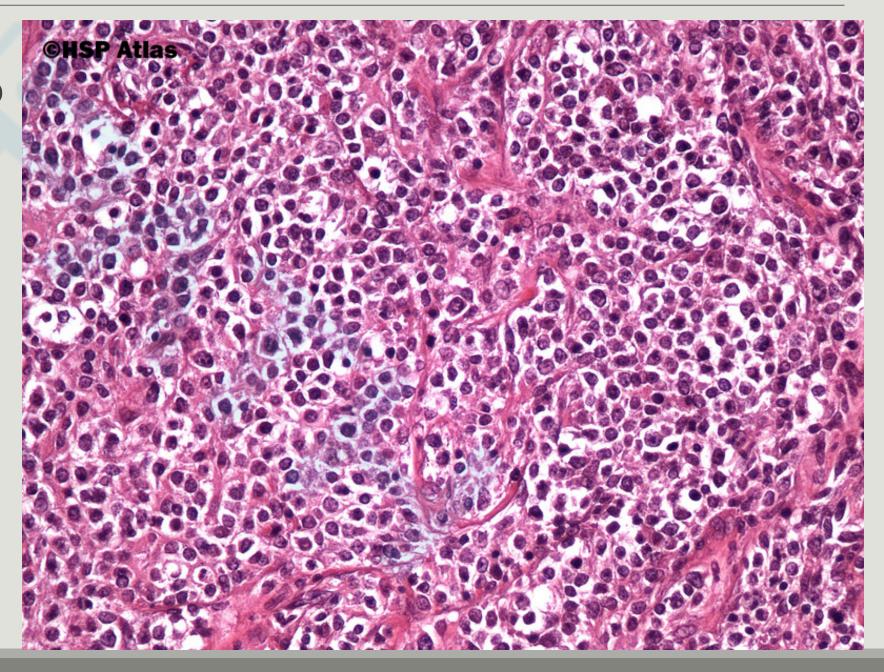
## Cyclin D1-positive Mediastinal Large B-Cell Lymphoma With Copy Number Gains of CCND1 Gene

A Study of 3 Cases With Nonmediastinal Disease

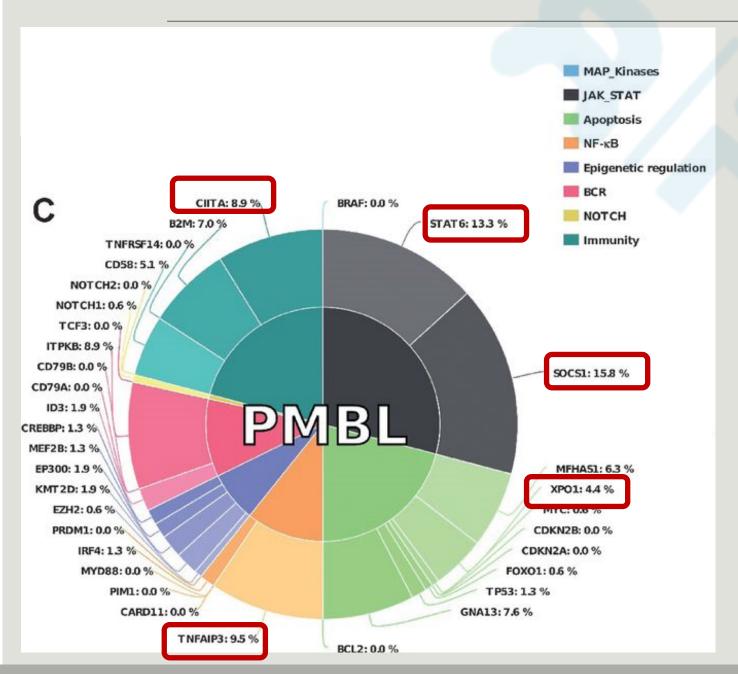
汇报人: 范林妮

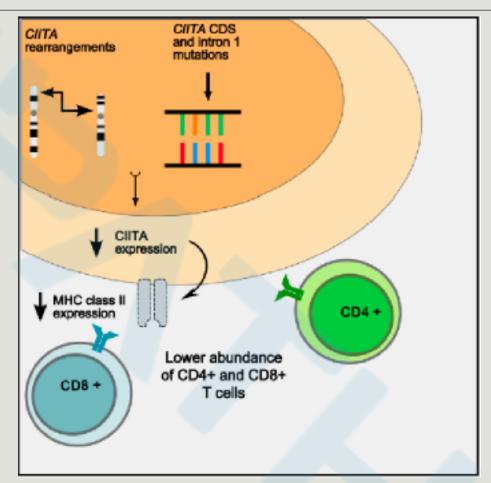

### Backgrounds

#### Primary mediastinal (thymic) large B-cell lymphoma (PMBL)

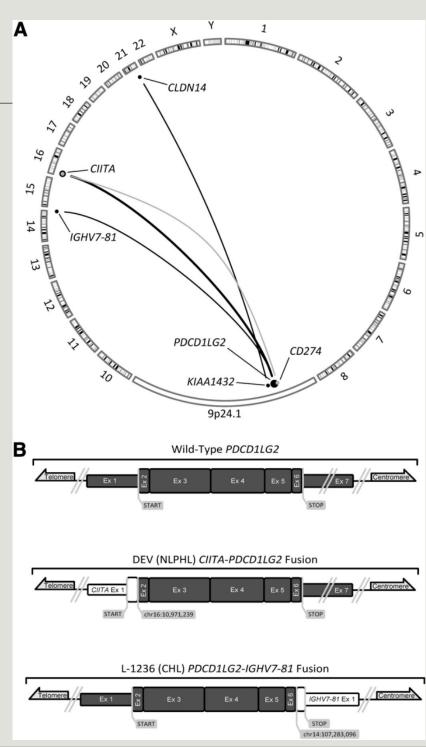
- ✓ a distinct entity of mature large B cells of putative thymic B-cell origin typically arising in the mediastinum
- ✓ predominantly in young women (F:M=2:1) with a more favorable survival

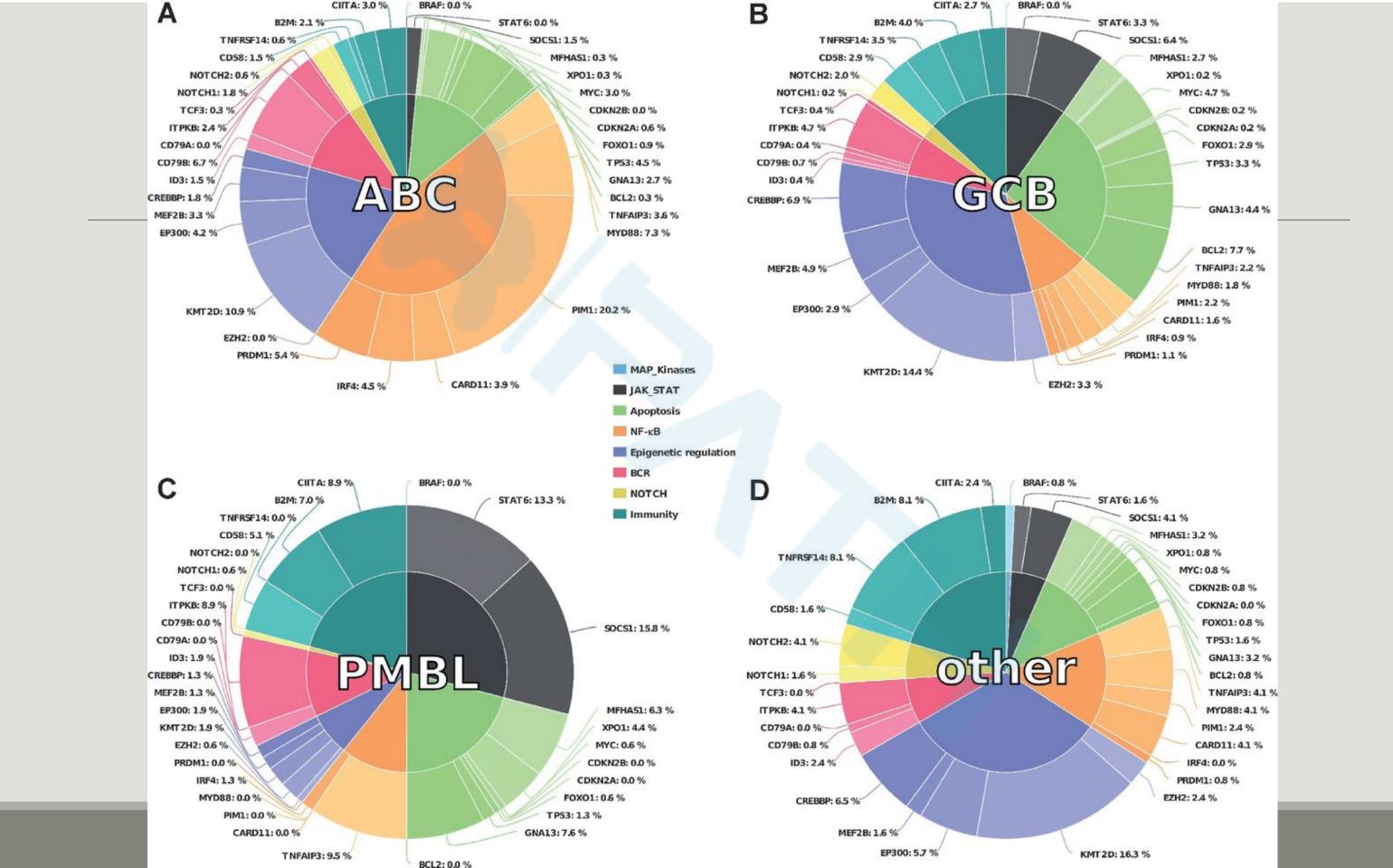
### Morphology of PMBL


- Morphologically, the tumor cells are usually medium-sized to large with round or oval nuclei and abundant pale or clear cytoplasm
- ✓ Collagenous fibrosis compartmentalizing the tumor cells is frequently observed




### IHC of PMBL


| Antibodies                                                 | Expression                                              |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Positive expression                                        |                                                         |  |  |  |
| pan-B-cell markers including CD20 and CD79a                | Pos                                                     |  |  |  |
| CD30, IRF4/MUM1                                            | Positive in majority of cases                           |  |  |  |
| BCL2, BCL6, and CD10                                       | Variable expression                                     |  |  |  |
| CD23, myelin and lymphocyte protein (MAL), PD-L1 and PD-L2 | Pos, characteristic finding of PMBL, unlike other DLBCL |  |  |  |
| MYC, TNFAIP2, coexistent TRAF1 and nuclear REL             | Pos                                                     |  |  |  |
| Negative expression                                        |                                                         |  |  |  |
| IG, PAX5, OCT2, BOB1, PU1.2                                | Neg (despite a functional IG gene rearrangement)        |  |  |  |


## Genetic changes





Rearrangements and mutations in the class II major histocompatibility complex (MHC) transactivator CIITA at 16p13 have been reported in half of the cases resulting in downregulation of MHC class II.





### Backgrounds

PMBL has a distinct gene expression profile (GEP), which is different from DLBCL, NOS, but similar to classic Hodgkin lymphoma (CHL)

Primary nodal cases without mediastinal involvement with the typical morphology, phenotype, and GEP of PMBL have been recently described, indicating that rare cases outside the mediastinum do exist.

### Aims of this study

In this study, we extend previous observations and report 3 cases:

- √ typical morphology and immunophenotype of PMBL
- diagnosed in lymph nodes (LN), including 2 cases without mediastinal mass that have the peculiarity of aberrant cyclin D1 expression

Distinguishing this unusual variant of PMBL from other cyclin D1-positive non-Hodgkin lymphomas entities such as mantle cell lymphoma (MCL) and DLBCL, NOS, may also have therapeutic implications.

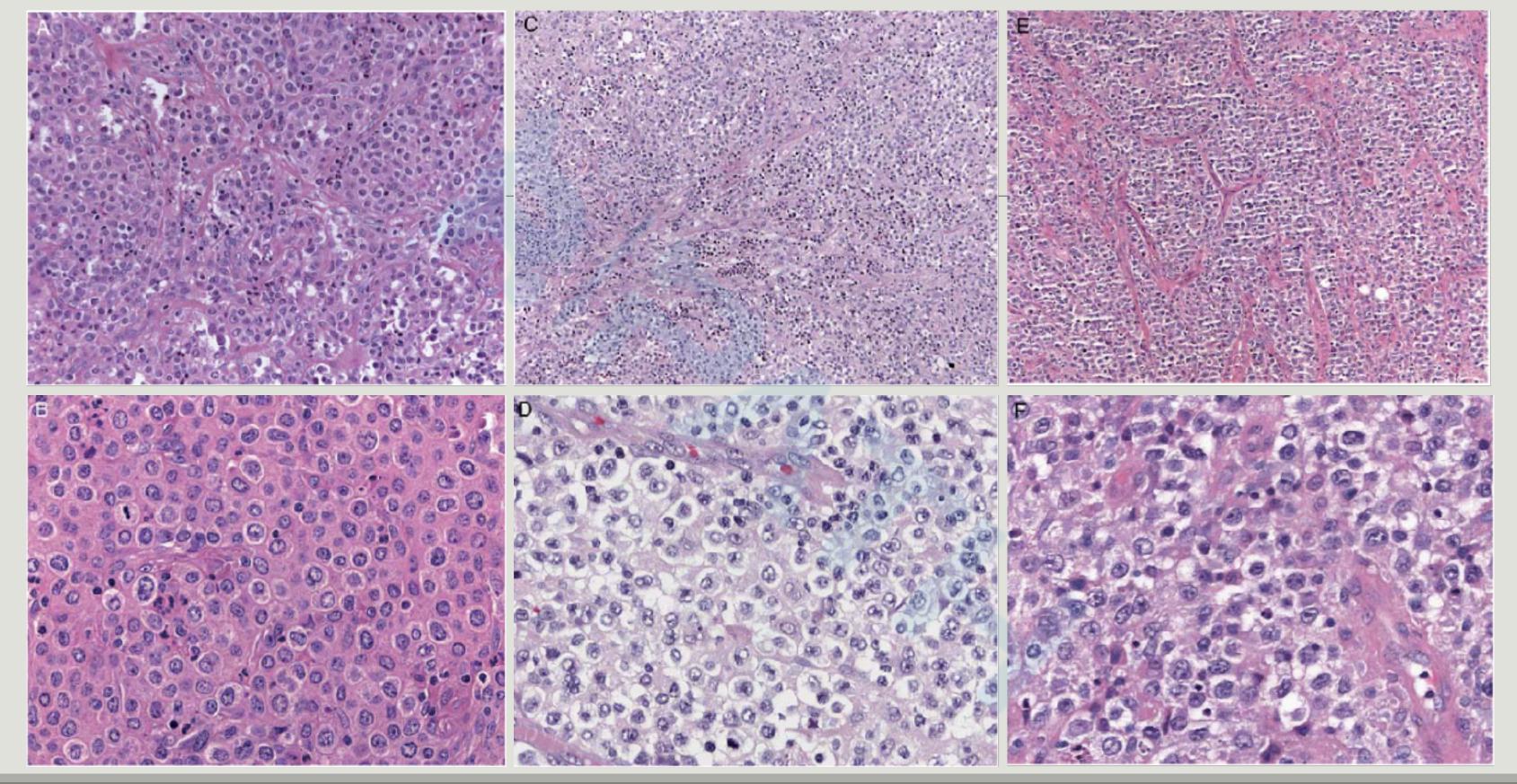
### MATERIALS AND METHODS

- ✓ Lymphoma Samples and Clinical Data
- **✓ Immunohistochemistry and Fluorescence In Situ Hybridization**
- ✓ Multiplex Ligation-dependent Probe Amplification, MLPA

reverse transcriptase-MLPA (RT-MLPA) is a new mRNA-based technique that evaluates the expression of 21 genes to assess the probability of a DLBCL being of germinal center (GCB), activated B-cell (ABC) or PMBL derivation

This signature uses 3 genes to identify PMBL (FCER2 encoding CD23, MAL, and TNFRSF8 encoding CD30), and 3 genes to identify DLBCL (MME, which encodes for CD10, usually negative in PMBL), IGM (usually negative in PMBL) and IRF4

✓ Next-generation Sequencing—based Mutational Analysis

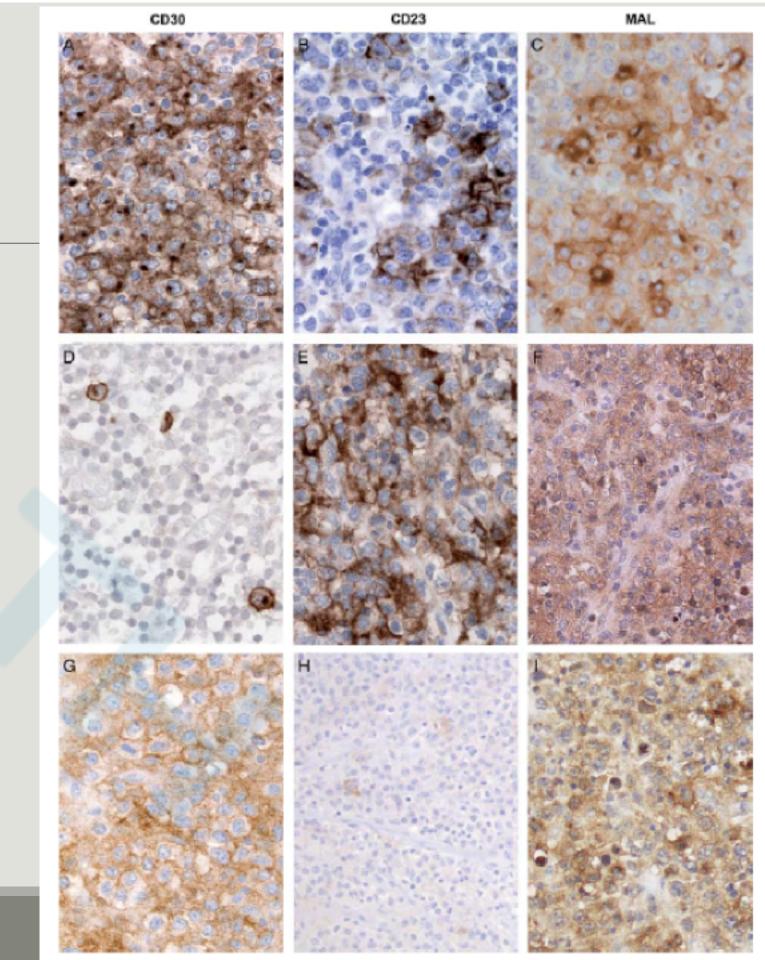

### Results

#### **Clinical Findings**

TABLE 1. Clinical and Pathologic Findings of Nonmediastinal Primary Mediastinal Large B-cell Lymphoma

|                                        | Case No. 1               | Case No. 2                         | Case No. 3                 |
|----------------------------------------|--------------------------|------------------------------------|----------------------------|
| Age (y) and sex                        | 72, female               | 80, male                           | 48, male                   |
| Location of biopsy 下颌下淋巴结              | Submandibular lymph node | Submandibular lymph node           | Supraclavicular lymph node |
| Mediastinal mass                       | No                       | No                                 | <b></b>                    |
| Compartmentalizing fibrosis            | Yes                      | Yes                                | Yes                        |
| Pale or clear cytoplasm of tumor cells | Yes                      | Yes                                | Yes                        |
| BCL2                                   | Positive                 | Positive                           | Positive                   |
| BCL6                                   | Positive                 | Positive                           | Positive                   |
| CD3                                    | Negative                 | Negative                           | Negative                   |
| CD5                                    | Negative                 | Negative                           | Negative                   |
| CD10                                   | Negative                 | Negative                           | Negative                   |
| CD20                                   | Positive                 | Positive                           | Positive                   |
| CD23                                   | Positive (partial)       | Positive                           | Negative (rare +)          |
| CD30                                   | Positive                 | Negative                           | Positive                   |
| Cyclin D1                              | Positive (strong, 90%)   | Positive (moderate to strong, 60%) | Positive (moderate, 60%)   |
| Kappa light chain                      | Negative                 | Negative                           | ND                         |
| Lambda light chain                     | Negative                 | Positive                           | ND                         |
| MAL                                    | Positive                 | Positive                           | Positive                   |
| MYC                                    | Negative                 | Negative                           | Positive                   |
| MUM1                                   | Negative                 | Negative                           | Positive                   |
| PD-L1                                  | Negative                 | Negative                           | ND                         |
| SOX11                                  | Negative                 | Negative                           | Negative                   |
| TP53                                   | Negative                 | ND                                 | ND                         |
| EBER                                   | ND                       | ND                                 | Negative                   |
| BCL2 FISH                              | Negative                 | Negative                           | Extra signals              |
| BCL6 FISH                              | Negative                 | Rearranged                         | Extra signals              |
| CIITA FISH                             | Negative                 | Negative                           | Negative                   |
| CCND1 FISH                             | Trisomy                  | Trisomy to tetrasomy               | Tetrasomy                  |
| MYC FISH                               | ND                       | Negative                           | Extra signals              |
| PD-L1/PD-L2 FISH                       | Negative                 | Negative                           | Negative                   |
| Probability of PMBL by RT-MLPA profile | 87.6%                    | 98.7%                              | 99%                        |
| Stage (Ann Arbor)                      | IA                       | IA                                 | ПВ                         |
| Treatment                              | R-CHOP for 6 cycles      | R-CHOP for 6 cycles                | R-EPOCH for 6 cycles       |
| Follow-up                              | CR for 25 mo             | CR for 19 mo                       | CR for 25 mo               |

ND indicates not done.




Case 1 Case 3

#### Results-IHC

BCL2, BCL6, CD20, MAL, cyclin D1, CD23 (cases 1 &2), CD30 (cases 1 &3)

CD10, CD5, SOX11, PD-L1, TP53



#### Results-IHC & FISH

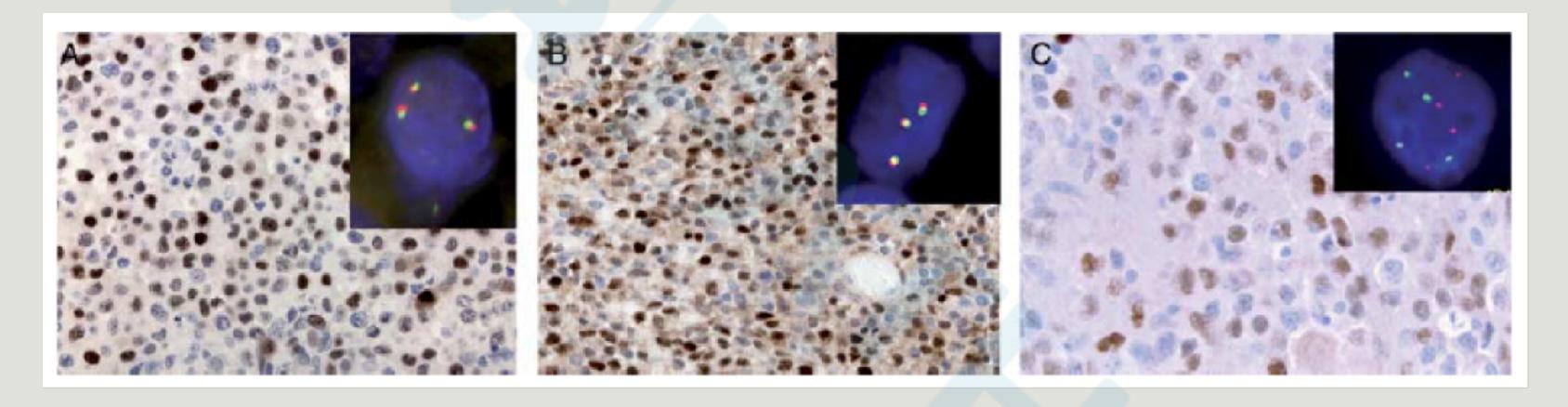
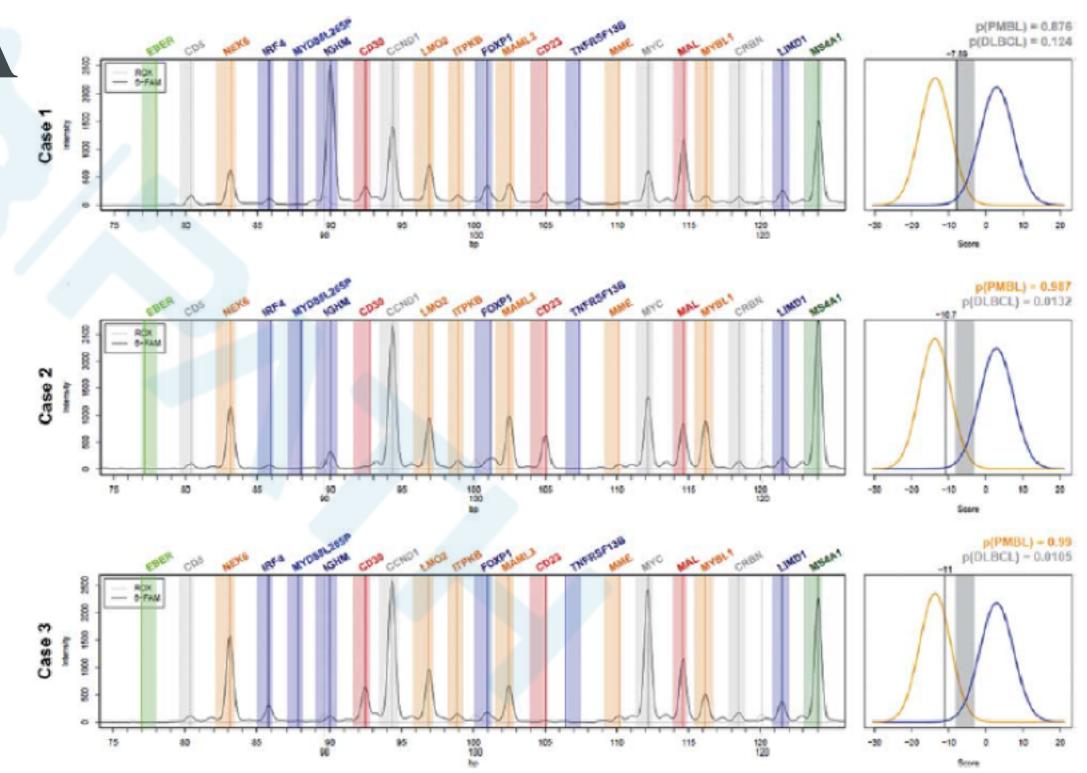




FIGURE 3. Cyclin D1 immunohistochemistry and CCND1 FISH analysis. All 3 cases expressed moderate to strong cyclin D1 protein. FISH analysis showed copy number gains of CCND1 gene without rearrangement (A, case 1 [inset, trisomy by CCND1 break-apart probe]; B, case 2 [inset, trisomy by CCND1 break-apart probe]; C, case 3 [inset, tetrasomy by IGH-CCND1 dual fusion probe, IGH, green signals; CCND1, red signals]).

#### Results- MLPA

FIGURE 4. Case 2 and 3 revealed a high probability of being PMBL (98.7% and 99%) rather than DLBCL, NOS (1.3% and 1%). Case 1 due to the high expression of IGM, and despite the expression of CD30, MAL, and CD23 reached only a marginal probability (87.6%) of being PMBL. The 3 cases revealed high CCND1 mRNA confirming the expression of the protein.



Blue for ABC-related genes, Orange for GCB-related genes, Red for PMBL-related genes, green for Epstein-Barr virus—positive DLBCL-specific EBER gene, dark green for MS4A1 (encoding CD20) internal control, and gray for other genes

## Results - NGS

TABLE 2. Genetic Aberrations in Nonmediastinal Primary Mediastinal Large B-cell Lymphoma

| Case No. | Gene    | cDNA                    | Amino Acid | VAF (%) | Coverage | SIFT      | Polyphen 2 |
|----------|---------|-------------------------|------------|---------|----------|-----------|------------|
| 1        | SOCS1   | c.621C > A              | p.F207L    | 14      | 3077     | Damaging  | PD         |
|          | SOCS1   | c.529C > G              | p.L177V    | 31      | 1159     | Damaging  | PD         |
|          | SOCS1   | c.428G > C              | p.S143T    | 13      | 3976     | Tolerated | Benign     |
|          | SOCS1   | c.391C > T              | p.Q131*    | 13      | 3999     | Damaging  | Damaging   |
|          | SOCS1   | c.387C > G              | p.H129Q    | 12      | 3992     | Tolerated | Benign     |
|          | SOCS1   | c.385C > T              | p.H129Y    | 13      | 4000     | Tolerated | pD         |
|          | SOCS1   | c.374G > C              | p.S125T    | 16      | 3996     | Damaging  | PD         |
|          | SOCS1   | c.368C > T              | p.P123L    | 13      | 4000     | Damaging  | PD         |
|          | SOCS1   | c.364G > T              | p.G122*    | 15      | 3990     | Damaging  | Damaging   |
|          | SOCS1   | c.347G > A              | p.S116N    | 14      | 3999     | Damaging  | PD         |
|          | SOCS1   | c.283G > A              | p.A95T     | 19      | 3764     | Tolerated | Benign     |
|          | SOCS1   | c.259C > T              | p.H87Y     | 11      | 3762     | Damaging  | Benign     |
|          | SOCS1   | c.197G>A                | p.R66H     | 40      | 653      | Tolerated | PD         |
|          | SOCS1   | c.136C > T              | p.P46S     | 33      | 1694     | Tolerated | Benign     |
|          | SOCS1   | c.49G > A               | p.A17T     | 12      | 1033     | Tolerated | Benign     |
|          | SOCS1   | c.47C > T               | p.A16V     | 27      | 1032     | Tolerated | Benign     |
|          | SOCS1   | c.37G > A               | p.V13I     | 26      | 1035     | Tolerated | Benign     |
|          | SOCS1   | c.34G > T               | p.A12S     | 26      | 1037     | Tolerated | PD         |
|          | SOCS1   | c.22G > A               | p.A8T      | 26      | 1033     | Tolerated | Benign     |
| 2        | SOCS1   | c.346A>T                | p.S116C    | 26      | 158      | Damaging  | PD         |
|          | SOCS1   | c.523C > T              | p.Q175*    | 31      | 464      | Damaging  | Damaging   |
|          | ID3     | c.189G > C              | p.Q63H     | 38      | 327      | Damaging  | pD         |
| 3        | SOCS1   | c.199_209delATCACGCGCGC | p.I67fs    | 58      | 380      | Damaging  | Damaging   |
|          | TNFAIP3 | c.1368_1369insGGGG      | p.P457fs   | 15      | 1956     | Damaging  | Damaging   |
|          | TNFAIP3 | c.111_112insT           | p. H38fs   | 20      | 3919     | Damaging  | Damaging   |
|          | TNFAIP3 | c.1251delA              | p.K417fs   | 40      | 3951     | Damaging  | Damaging   |
|          | EZH2    | c.1904_1905insAA        | p. N635fs  | 10      | 440      | Damaging  | Damaging   |
|          | XPO1    | c.1711G>A               | p.E571K    | 32      | 1833     | Damaging  | pD         |
|          | PIM1    | c.131C>A                | p.A44D     | 34      | 200      | Uncertain | pD         |
|          | GNA13   | c.199C > T              | p.Q67*     | 78      | 196      | Damaging  | Damaging   |
|          | EP300   | c.4645dupA              | p.K 1549fs | 23      | 322      | Damaging  | Damaging   |

<sup>\*</sup>Stop codon mutation.

del indicates deletion; fs, frameshift; ins, insertion; pD, possibly damaging; PD, Probably damaging.

### Results- NGS

- ✓ The mean read depth of the NGS analysis was 1694 (range, 158 to 4000).
- ✓ Aberrations in SOCS1 gene were found in all 3 cases (100%):
  - Eighteen of 22 (82%) were missense, 3 were nonsense mutations, and 1 was a frameshift deletion
- ✓ Three mutations in TNFAIP3 gene were identified in case 3; all of them are frameshift deletion/insertion
- ✓ Other mutated genes were ID3, XPO1, EZH2, PIM1, GNA13, and EP300

# Discussion 1: aberrant expression of cyclin D1

| Diseases with cyclin D1 expression | Genetic changes of Cyclin D1                                                                                                                                   | DDx                                                 |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| MCL                                | IGH/CCND1: t(11;14) (q13; q32)                                                                                                                                 | SOX11+, CD5+                                        |
| hairy cell leukemia                |                                                                                                                                                                | CD20+,CD22+, Annexin A1+, CD5-,<br>CD10-; VH基因体细胞突变 |
| a subset of plasma cell myeloma    | strong cyclin D1 expression is associated with t(11;14) and high CCND1 mRNA expression heterogenous cyclin D1 expression is mostly associated with polysomy 11 | CD79a+, CD38+, CD138+                               |
| DLBCL                              | 12% (7/60) revealed copy number gains of CCND1 gene                                                                                                            | SOX11-, CD5-                                        |
| NLPHL                              | Polysomy with increased copies of CCND1                                                                                                                        |                                                     |

TABLE 4. Cyclin D1 Expression and CCND1 Gene Aberrations in DLBCL With Literature Review

| References                              | Case No.                  | Cyclin D1                                | CD5                            | SOX11        | CCND1 FISH                                |
|-----------------------------------------|---------------------------|------------------------------------------|--------------------------------|--------------|-------------------------------------------|
| Ehinger et al <sup>32</sup>             | 8 (3.5% of DLBCL)         | Weak and focal to diffuse                | Negative                       | ND           | 2 increased copies and 3 negative         |
| Rodriguez-Justo<br>et al <sup>33</sup>  | 1                         | 60% of tumor cells                       | Negative                       | ND           | 3-4 copies                                |
| Teruya-Feldstein<br>et al <sup>57</sup> | 1                         | 40% of tumor cells                       | Negative                       | ND           | ND                                        |
| Schneider et al <sup>58</sup>           | 1                         | 30% of tumor cells                       | Positive                       | Negative     | Negative                                  |
| Metcalf et al <sup>59</sup>             | 4 (2% of DLBCL)           | Strong and diffuse                       | ND                             | ND           | Negative in 2 tested cases                |
| Vela-Chavez et al <sup>60</sup>         | 17 (15% of DLBCL)         | Weak and focal                           | Negative                       | ND           | Negative                                  |
| Lucioni et al <sup>61</sup>             | 1                         | Moderate in 60% of tumor cells           | Negative                       | Negative     | Negative                                  |
| Hsiao et al <sup>62</sup>               | 4 (1.5% of DLBCL)         | 60%, 30%, 50%, and 10% of<br>tumor cells | Negative                       | Negative     | Negative                                  |
| Izquierdo et al34                       | 1                         | Strong and diffuse                       | Negative                       | ND           | 3 copies                                  |
| Ok et al <sup>35</sup>                  | 30 (2.1% of DLBCL)        |                                          | Negative                       | ND           | 3 increased copies and 25 negative        |
| Total                                   | 68 (1.5%-15% of<br>DLBCL) | Weak and focal to strong and<br>diffuse  | Only 1 case (1.4%)<br>positive | All negative | 7/60 of cases (12%) with increased copies |
|                                         |                           |                                          |                                |              |                                           |

ND indicates not done.

# Discussion 1: aberrant expression of cyclin D1

✓ PMBL V.S CD5-, pleomorphic or blastoid MCL

IHC, GEP and Mutational analysis demonstrated SOCS1 mutations in the 3 cases, and TNFAIP3 and XPO1 mutations in case 3, supporting further the diagnosis of PMBL.

## Discussion 2: the possibility of PMBL at nonmediastinal sites

TABLE 3. Nonmediastinal Primary Mediastinal Large B-Cell Lymphoma With Literature Review

Age

| Age     |                                                                 |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     |                                           |
|---------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| (y)/Sex | Location                                                        | Molecular Findings                                                                                                                                                                                            | Stage                                                                                                                                                                                                                                                                                                                                                                                                                      | Treatment                                                                                                                                                                                                                                                                                                                           | Outcome (mo)                              |
| 39/M    | Right lung                                                      | ND                                                                                                                                                                                                            | ΙE                                                                                                                                                                                                                                                                                                                                                                                                                         | Pneumonectomy without<br>chemotherapy                                                                                                                                                                                                                                                                                               | Bilateral adrenal<br>spreading after 3 mo |
| 53/F    | Between urinary bladder and<br>uterus                           | MLL gene mutation                                                                                                                                                                                             | IV                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                  | NA                                        |
| 53/M    | Cervical LN                                                     | GEP signal of PMBL                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                          | R-CHOP                                                                                                                                                                                                                                                                                                                              | NED (100)                                 |
| 85/F    | Periaortic and inguinal LN                                      | GEP signal of PMBL                                                                                                                                                                                            | II                                                                                                                                                                                                                                                                                                                                                                                                                         | R-CHOP                                                                                                                                                                                                                                                                                                                              | DOD (66)                                  |
| 39/F    | Kidney, adrenal gland,                                          | GEP signal of PMBL                                                                                                                                                                                            | IV                                                                                                                                                                                                                                                                                                                                                                                                                         | R-EPOCH                                                                                                                                                                                                                                                                                                                             | DOD (34)                                  |
| 19/M    | *                                                               | GEP signal of PMBL                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                          | R-CHOP                                                                                                                                                                                                                                                                                                                              | NED (93)                                  |
| 72/F    | Submandibular LN                                                | RT-MLPA and mutational<br>analysis of PMBL                                                                                                                                                                    | IA                                                                                                                                                                                                                                                                                                                                                                                                                         | R-CHOP                                                                                                                                                                                                                                                                                                                              | NED (25)                                  |
| 80/M    | Submandibular LN                                                | RT-MLPA and mutational<br>analysis of PMBL                                                                                                                                                                    | IA                                                                                                                                                                                                                                                                                                                                                                                                                         | R-CHOP                                                                                                                                                                                                                                                                                                                              | NED (19)                                  |
|         | (y)/Sex<br>39/M<br>53/F<br>53/M<br>85/F<br>39/F<br>19/M<br>72/F | 39/M Right lung  53/F Between urinary bladder and uterus  53/M Cervical LN  85/F Periaortic and inguinal LN  85/F Kidney, adrenal gland, pancreas, small intestine  19/M Parotid gland  72/F Submandibular LN | 39/M Right lung ND  53/F Between urinary bladder and uterus  53/M Cervical LN GEP signal of PMBL RT-MLPA and mutational analysis of PMBL  80/M Submandibular LN RT-MLPA and mutational | 39/M Right lung ND IE  53/F Between urinary bladder and uterus  53/M Cervical LN GEP signal of PMBL I GEP signal of PMBL II GEP signal of PMBL II GEP signal of PMBL IV pancreas, small intestine  19/M Parotid gland GEP signal of PMBL I RT-MLPA and mutational analysis of PMBL  80/M Submandibular LN RT-MLPA and mutational IA | Stage   Treatment   Stage   Treatment     |

DOD indicates die of disease; F, female; M, male; NA, not available; ND, not done; NED, no evidence of disease.

## Discussion 2: the possibility of PMBL at nonmediastinal sites

- √ ectopic thymus location
- √ common sites of PMBL involvement
- ✓ a recent study has hypothesized the origin of PMBL from a B cell that also gives origin to CHL with the propensity to migrate into the thymus but also to other organs
- According to the WHO classification, in order to establish a diagnosis of PMBL at nonmediastinal sites without evident mediastinal disease, GEP analysis is mandatory to confirm the diagnosis
- > RT-MLPA classified 85% of the samples into the expected subtype

RT-MLPA classified 85% of the samples into the expected subtype

## Discussion 3: CD30 +DLBCL had a favorable prognosis

Upregulation of genes encoding negative regulators of NF-kB activation and lymphocyte survival

Downregulation of genes encoding B-cell receptor signaling and proliferation, as well as prominent cytokine and stromal signatures

#### Discussion 4: PMBL & CHL

- ✓ Similar in their mutational profile and show frequent mutations in TNFAIP3, SOCS1, STAT6, XPO1, and PTPN1 genes
- ✓ SOCS1 mutations are reported in up to 56% of PMBL, 42% of CHL, and 50% of NLPHL, incontrast to 16% in GCB DLBCL, NOS
- ✓ a recent study has hypothesized the origin of PMBL from a B cell that also gives origin to CHL with the propensity to migrate into the thymus but also to other organs

#### Conclusion

- ✓ We report 3 cases of nodal mature large B-cell lymphomas with cyclin D1 expression and copy number gains of CCND1 gene but without translocation.
- ✓ The morphology, phenotype, mutational landscape, and GEP supported the diagnosis of PMBL, although in 2 of the cases no mediastinal mass was present.
- ✓ Our study also underlies the importance of investigating CD30, CD23, and MAL expression in DLBCL to identify possible cases of PMBL without evidence of mediastinal involvement to gain insight into this rather unusual nodal presentation.

## THANK YOU!